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Optimal Confidence Sets, Bioequivalence, 

and the Lima9on of Pascal 

Lawrence D. BROWN, George CASELLA, and J. T. Gene HWANG* 

We begin with a decision-theoretic investigation into confidence sets that minimize expected volume at a given parameter value. 
Such sets are constructed by inverting a family of uniformly most powerful tests, and hence they also enjoy the optimality property 
of being uniformly most accurate. In addition, these sets possess Bayesian optimal volume properties and represent the first case (to 
our knowledge) of a frequentist 1 - a confidence set that possesses a Bayesian optimality property. The hypothesis testing problem 
that generates these sets is similar to that encountered in bioequivalence testing. Our sets are optimal for testing bioequivalence in 
certain settings; in the case of the normal distribution, the optimal set is a curve known as the limacon of Pascal. We illustrate the 
use of these curves with a biopharmaceutical example. 

KEY WORDS: Bayes estimation; Decision theory; Frequentist estimation; Hypothesis testing; Uniformly most accurate; Uniformly 
most powerful. 

1. INTRODUCTION 

The construction of good set estimates of a parameter, 
both frequentist and Bayesian, has long been a goal of sta- 
tisticians. The formalization of "good" set estimates is usually 
in terms of some measure of the size of the set, often taken 
to be the volume of the set. Alternatively, the size of the set 
can be measured by its probability of false coverage. Thus 
if C(x) is a set estimate of a parameter 0, then P0(O E C(X)) 
is the probability of true coverage, whereas P0(0' E C(X)), 
0 =$ 0', is the probability of false coverage. 

The false coverage of C(x) can be related to its volume 
through the Ghosh-Pratt identity (Ghosh 1961; Pratt 1961 ), 

E0vol(C(X)) = f P0(O' E C(X)) dO', (1) 

but this has rarely been used in establishing volume opti- 
mality. An exception is the work of Cohen and Strawderman 
(1973). 

Equation (1) illustrates that possession of an optimal ex- 
pected volume is a somewhat stronger property than pos- 
sessing optimal false coverage probabilities, because expected 
volume can be regarded as a sum over all false coverages. 
Because admissibility with respect to expected volume im- 
plies admissibility with respect to false coverage probability, 
a procedure with optimal expected volume will have attrac- 
tive false coverage properties. But the converse is not true. 
As domination of false coverage probabilities ties directly 
into testing theory, where much is known about optimality, 
we find many cases where set estimates with optimal false 
coverage properties do not have optimal volume properties. 
For example, the usual multivariate normal confidence set 
cannot be uniformly dominated in false coverage, but it can 
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be dominated in volume (see Casella and Hwang 1983 or 
Shinozaki 1989). 

There is, however, an instance in which false coverage and 
volume are equivalent. That is, when there is interest in pro- 
ducing a procedure that is optimal at some point in the pa- 
rameter space. Thus, if there is interest in minimizing volume 
at a parameter value 0 = 0*, then this can be accomplished 
by minimizing all of the false coverages at 0 = 0*. Doing so 
brings the construction of optimal volume confidence sets 
back into a Neyman-Pearson testing setup. 

At first it may seem surprising that one can construct a 
confidence set that has optimal size at 0 = 9* while main- 
taining a nominal coverage probability for all parameter val- 
ues. But this problem is a version of what was solved by 
Sterne (1954) in the binomial case (see also Crow 1956). 
For X binomial(n, p), Sterne proposed to construct a 
confidence set for p by inverting acceptance regions com- 
posed of the fewest X values necessary to have a rejection 
region with prespecified size a. He noted that such a set 
minimized the sum of the n + 1 lengths. It turns out that 
such a construction, which is a Neyman-Pearson-type con- 
struction, will yield sets of minimum volume at 0 = 0*. 

Interestingly, there is another aspect to the construction 
outlined here. We see that the process of minimizing the 
expected volume at a value 0 = 9* can also be used to min- 
imize a Bayesian expected volume; that is, an expected vol- 
ume integrated over a prior distribution. Thus our construc- 
tion gives a frequentist confidence set (one that maintains a 
nominal coverage probability) that optimizes a Bayesian 
measure of volume. 

In Section 2 we formalize the decision-theoretic problem 
and establish an optimality theorem in the frequentist setting. 
We also consider the normal case in detail, where the lima9on 
of Pascal appears. In Section 3 we connect these results to 
the Bayesian formulation and show how to construct optimal 
frequentist/Bayes intervals. We address the unknown vari- 
ance case in Section 4, where we see that the known variance 
optimality results can be generalized to this case. In Section 
5 we discuss the connections to the problem of bioequiva- 
lence testing and also present an example of inferences from 
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bioequivalence confidence sets based on the limacon. Finally, 
we provide some observations and conclusions in Section 6. 

2. THE FREQUENTIST INTERPRETATION 

2.1 A General Formulation 

Let X have continuous density (for convenience) ft( 1 0) 
with respect to Lebesgue measure. Given that we observe X 
= x, we set up a confidence set for 0. This set, C(x), may 
be a randomized set, and has inclusion probability 

PO0 E C(x) I x) = 9(P I x); (2) 

that is, p(0 I x) is the probability of including the value 0 in 
the set when x is observed. For nonrandomized sets, <p(0 I x) 
= I(0 E C(x)), the indicator function of the set C(x). (Ran- 
domized rules are included only for completeness of the the- 
ory, as they should never be recommended in practical ap- 
plications.) Note also that 0 need not be a scalar. Indeed, the 
real usefulness of the procedures developed here are for the 
vector parameter case, as is illustrated later. 

The volume of the set C(x), vol(C(x)), with respect to 
Lebesgue measure is given by 

vol(C(x)) = f p(tI x) dt, (3) 

with expected volume 

E0vol(C(X)) = vol( C(x))f( x I 0) dx. (4) 

Besides calculating (4) as a measure of size, it is usual to 
calculate the frequentist coverage probability of the set C(x); 
that is, 

PN(&EC(X))= f p(0Ix)f(xI0)dx. (5) 

A standard frequentist requirement is to have this coverage 
probability greater than some nominal level, say 1 - a, for 
all values of 0. Subject to that constraint, we seek to minimize 
the expected volume of C(x) at a selected value of 0. Without 
loss of generality we take 0 = 0 and, to avoid trivial pathol- 
ogies, 0 < a < 1. Thus the problem of interest becomes 

over all confidence sets C(x), minimize Eovol(C(X)) 

subject to P(0 E C(X)) ? 1 - a V 0. (6) 

Before stating and proving a formal theorem, note that 
specifying 0 = 0 in the volume requirement, which puts a 
particular importance on this value, makes one think of a 
hypothesis testing formulation. But the formulation of a hy- 
pothesis test that is equivalent to (6) is not entirely straight- 
forward, for the specified value 0 = 0 will become part of 
the alternative hypothesis, rather than the null hypothesis. 
(This is because calculation of the expected volume at 0 
= 0 is equivalent to a power calculation.) 

Consider testing 

H0:6=60 versus H1:=0= (7) 

where X f( * 60) . The most powerful ( Neyman-Pearson ) 
size ae test is given by a rejection rule satisfying 

Case 1: a > b 
0 

0 LO 

1.0 0.5 0.0 0.5 1.0 

0 

CD 

0 

Case 2: a < b 
0 

LO~ 

0 

0 

1.0 0.5 0 0.5 1 0 

LC) 

0 

Figure 1. The Limaqon of Pascal r = a + b cos d. If a < b, the limaqon 
has an inner loop, which does not occur in the confidence set. The con- 
fidence set {0: 101 < Za + I x I cos f3} is in effect a "positive-part" limaqon. 

i{' = 1 iff(xIO) > k(Oo)f(xI00), 

= 0 otherwise, 

for which E00(a00(X)) = a. Using inclusion probabilities as 
specified in (2), define a confidence set C* with 

0*(6Ix) = 1- 1t'(X). (8) 

It is this confidence set that solves the problem in (6 ). Note 
that in the usual nonrandomized case, the confidence set is 
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a. x=(0,0) b. x=(2,.5) 

e ~~~~~~~~~~~~~~~~~~~I II eI_'-1- 

-4 -2o 

c. x=(4,2) d. x=(10,7) 

LO7 

Q~~~~~~~~~~~~~~~~~~~~~~I 

l~~~~~~~~~~~~ / 

-3 -2 0 2 4 - 1 3 15 

Figure 2. Two-Dimensional Limacon (Solid Lines) and Usual Confidence Sphere (Dashed Lines) for Four Different Data Points: (a) x =(O, O); (b) x 
=(2, .5); (c) x = (4, 2); (d) x = (10, 7). The confidence sphere has a constant radius, while the limaqon enlarges as the data move away from the 

origin. (Note that the four graphs have different scales to accommodate this.) 

C*(x) = {0: f(xI0) >f(xIO)/k(0)}. (9) 

Theorem 2.1. LetX '-ff(. 10), and let d*( O x) be given 
by (8). The confidence set C*(x) minimizes the expected 
volume at 0 = 0 among all 1 - a confidence sets. 

Proof: The proof is based on the Ghosh-Pratt identity 
(Ghosh 1961; Pratt 1961 ) and can be found in Pratt's paper 

(along with the one-dimensional normal example). We have 
for any confidence set C(x), 

Eovol(C(X)) = vol(C(x))f(xIO) dx 

- X I y(0 I x) d6f(x I0) dx, 
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where p(0 I x) is the probability that 0 is included in C(x) 
when x is observed. Interchanging the order of integration 
gives 

Eovol(C(X)) = f f sP(0I x)f(x I 0) dx dO 

= f o 1(0E C(X)) d. (10) 

The integrand in ( 10) is the probability of false coverage, 
which is minimized, subject to (6), by the uniformly most 
accurate set C*(x), which in turn produces the minimum 
expected volume. 

It should be noted that any weighted volume measure can 
be used and Theorem 2.1 would remain valid. That is, if we 
measure the expected size of a set C(x) by 

EO[size(C(X))] = [f(0I x)v(O) d0]f(xIO) dx, 

(11) 

where v(*) > 0 is some weight function, then C*(x) of (8) 
minimizes ( 11) over all 1 - a confidence sets. 

2.2 The Normal Case 

To better understand the behavior of C*(x), we look at 
it more closely in the normal case. If X has a p-variate normal 
distribution, X N Np(0, I), then for the hypothesis test (7) 
we would reject Ho if 

e-(Il /2)1 XI 2 

e-(I/2)1X-0012 > k(0o) x'xo < k*(00), 

where k*(00) is chosen to give the test size a. Thus the 
confidence set is C*(x) = {0: x'0 2 k*(0)}. To evalu- 
ate the form of k*( 0), we use the fact that W = 0'X/I1 0 1 
, n( I 0 1, 1), regardless of the dimension of X. Then for 

0 * 0, the coverage probability is 

Po(0 E C*(X)) = P0(X'0 2 k*(0)) 

= P(I0I W? k*(0)) = b(a) 

for k*(0)= 0 (10 -a), where b( * ) is the standard normal 
cdf. Choosing a = -1(1 - a) yields a 1 - a confidence 
interval. 

We next look more closely at the shape of C*(x) and 
write x'0 = Ixl IIOcos i, where cos i = x'0/lxl 101 and f 
is the angle between x and 0. Then in the normal case the 
optimal confidence set is 

C*(x) = {0: 101 < a + Ixlcos30}. (12) 

The boundary of this set is the main lobe of a curve known 
as the limacon of Pascal, a curve often used in mathematics 
courses to illustrate polar coordinate techniques. (The li- 
macon was actually studied by Etienne Pascal, the father of 
the famous Blaise Pascal; see Archibald 1900.) The limacon 
is shown in Figure 1 (p. 881), and the confidence set ( 12) is 
graphed in Figure 2 for various values of x when p = 2. It is 
interesting to note that when x = 0 the set is a sphere, but 
as x moves away from zero there is a distinct nonconvexity 

to the set. (The limacon is actually a generalization of the 
cardiod, a "heart-shaped" polar curve.) As x tends toward 
infinity, the limacon again becomes more like a sphere. In 
higher dimensions, the limacon shape is retained. If we graph 
a higher-dimensional limacon by identifying the x axis with 
the data x, and using j3 as the angle between 0 and x, then 
the boundary of the set (12) will resemble the limacon in 
Figure la. The remainder of the set is then generated by 
rotating the limaqon about the x axis. 

Notice that C*(x) has coverage probability b(a) regardless 
of the dimension of the problem. In one dimension some 
further simplifications can be made. Here we have W 
= IXIsgn(0X) - n(0 1, 1), and 

C*(x) ={0: I xlsgn(Ox)2 101 -a} 

={0: min(O,x-a)<0<max(O,x+a)}. (13) 

The 90% confidence interval has a = 1.28 and is equal to x 
? 1.28 for small I x I. The usual two-sided 90% confidence 
interval is x ? 1.645. Thus C*( x) is narrower than the usual 
interval for small values of x, but wider for larger values. 
Figure 3 compares C*(x) with the usual one-dimensional 
interval. 

As mentioned before, the one-dimensional C*(x) was first 
derived by Pratt ( 1961), who also discussed the connection 
with the Sterne-Crow intervals for a binomial success prob- 
ability (Crow 1956). But the interval ( 13) has other histories. 
It is strongly connected with the application of bioequiva- 
lence testing, which will be discussed in Section 5. In a dif- 
ferent context, the interval emerged in the work of Hsu ( 1981, 
1984), who derived the interval in the context of a multiple 
decision problem, where one is interested in confidence in- 

90% Confidence Limits 
-One Dimension- 

oz] /X~~~~/ /// 

I - / /~~/ 

v/ ,, 
/ / / 

cs / // / 
I / // 

Ct' I / , I / 

-4 -2 0 1 2 3 4 5 

Figure 3. Comparison of C*(x) (Solid lines) of (13) With the Usual 90% 
Confidence Interval (Dashed Lines). 
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tervals for the distance from the best mean. (A short dis- 
cussion of C*(x) and some of its properties can be found in 
exercise 9.31 of Casella and Berger [ 1990 ].) 

The expected volume, at 0 = 0, can also be evaluated for 
C*(x). Because C*(x) = {0: 101 < w + a}, where W 

n(0 1, 1), we have 

Eovol(C*(X)) = f[f I(0 E C*(x))f(xIO) dx] dO 

@ { X Xt@/ 
f 

1 

x I 
8 atx0) dx] da 

= fx:x'0i101?-101 -a} f(I )d]d 

4J (a - I 01) dO, (14) 

where the last equality follows from the fact that for X 
- 

N(O, I), X'0/ 101 
- 

N(O, 1) for any nonzero 0. If we then 
apply a polar transformation, we then have 

p/2 00 

Eovol(C*(X)) p2 I rP14?(a - r) dr 

ir 
p/2 Ja (a - t)P e1t2/2 

P(p/2 + 1) J-oo2 p 

(15) 

Note that ijpP/2/F(p/2 + 1) is the volume of a p-sphere of 
radius 1, so the pth root of the integral in ( 15 ) is effectively 
the radius of the set. For p = 1, we can write 

Eovol(C*(X)) = 2[ai(a) + eI/] 

but for other values of p the integral is harder to evaluate. 
Table 1 gives some values of the pth root of Eovol(C*(x)) 
and, for comparison, the corresponding values for CO(x), 
the usual confidence sphere. 

Of course, for 0 * 0, Eovol(C*(X)) will grow larger than 
Eovol(CO(X)) (which is constant in 0), the discrepancy in- 
creasing as 101 increases. This is illustrated in Figure 2, which 
compares realized values of the two sets for a variety of x 
values. Note that the different graphs have different scales, 
with the value of x at the center of the sphere. 

3. THE BAYES / FREQUENTIST INTERPRETATION 

Interestingly, the same mathematical technique that pro- 
duces the 1 - a confidence set of minimum expected volume 
at a particular 0 also minimizes the expected Bayesian volume 
using a prior for 0. If X - f( 1 10), where 0 has a prior dis- 
tribution ir, then the expected Bayesian volume of a set C(x) 
is 

Ervol(C(X)) = J [J vol(C(x))f(xI 0) dx]ir(0) dO. 

(16) 

We now seek to minimize ( 16), a Bayesian measure, among 
all sets C(x) that satisfy the frequentist coverage probability 
constraint, P0(6 E C(X)) 2 1 - a. 

In Section 2 the minimizing set was constructed from test- 
ing Ho: 6 = 60 versus H1: 6 = 0 or, equivalently, Ho: X 

Table 1. Effective Volume (pth Root of Expected Volume) of C*(x) 
and CO(x), the Usual Confidence Sphere 

p 1 - a [Eovol C*(X)]I/P [Eovol (CO(X))]'P Ratio 

1 .90 2.66 3.29 .809 
1 .95 3.33 3.92 .849 
1 .99 4.66 5.15 .905 
3 .90 2.03 4.03 .504 
3 .95 2.36 4.50 .524 
3 .99 3.01 5.45 .552 

10 .90 2.35 4.39 .535 
10 .95 2.58 4.69 .550 
10 .99 3.04 5.29 .575 

- f(x Io) versus HI: X - f(xI0). In the Bayesian for- 
mulation, the minimizing set is constructed from the test 

Ho: X - f(x IO) versus HI: X - m,(x), 

where m,( x) = fe f( x 0) 7r( 0 ) dO. Thus the confidence set 
is given by 

C* (x) = {: f(x I0) > m,(x) /k(O)} (17) 

where k(O) is chosen so that P0(O E C* (x)) = 1 - a. We 
have the following theorem 

Theorem 3.1. LetX -f(xI0), 0 v-(O), and C* (x) 
be given by ( 17). The confidence set C* (x) minimizes the 
expected Bayesian volume ( 16) among all 1 - a confidence 
sets. 

Proof For any confidence set C(x), we have 

E,vol(C(X)) = J [f vol(C(x))f(xI0) dx]ix(O) dO 

= f vol(C(x))m,(x) dx. 

Now proceed as in the proof of Theorem 2.1, with m,( x) in 
place off( x IO ). 

For illustration, consider again the normal case X - N(O, 
I) and 0 - N(O, T2I) . The marginal distribution of X is 
N(O, (T2 + 1)I), and the confidence set is 

Ct*(X) (0:06- T X 'k*(O) (18) 

where ((T2 + 1)/T2)2k*(O) is the upper a critical point of 
a noncentral chi-squared distribution with noncentrality pa- 
rameter 1012/T2. It can be shown that as 2 0, this set 
reduces to C*(x) of the previous section and, as 2 ,00 

this set approaches the usual sphere CO(x). 

4. GENERALIZATIONS TO THE CASE 
OF UNKNOWN VARIANCE 

The set C*(x) of (9) is optimal in cases where there are 
no nuisance parameters, and the normal examples of Section 
2.2 all reflect this. Of course, the more practical problems 
usually involve nuisance parameters, and we now consider 
that case. We restrict our discussion to the normal distri- 
bution with unknown mean and variance. 
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With a sample X1, . . , X, from n(0, a 2) with both pa- 
rameters unknown, there are two ways of generalizing the 
procedure of Section 2. The first, and perhaps the more ob- 
vious, is to test the hypotheses 

HO:0=00, a->0 versus H1:0=0, >0. (19) 

Using a standard Student's t test, this leads to intervals of 
the form 

Ct(X, s) = 0: min(0, x- - ta,n-I ) 

< 0 < max(0, xT + ta,n-l %)}, (20) 

where ta,nll is the upper a cutoff from Student's t distribution 
with n - 1 degrees of freedom. It is straightforward to verify 
that C,(x, s) is a 1 - a confidence interval, although it does 
not enjoy the same optimality properties as the interval (9). 
This interval was also considered by Bofinger (1992) and by 
Hsu, Hwang, Liu, and Ruberg (1994), although they did 
not investigate its optimality. We detail its exact optimality 
later. 

For this problem, it is natural to consider only confidence 
sets related to the usual (scale-invariant) t tests of Ho. This 
means that the inclusion probabilities of the confidence set 
must be of the form 

sO(0x I XI, Xn) =( | O 5). (21) 

Note that the intervals of (20) have this form. 
A second, perhaps less obvious way of generalizing Section 

2.2 is to modify the hypotheses of (7) by dividing by a to 
obtain 

Ho: -=7o versus H1: -=0, (22) 

where qo is a fixed constant. On defining q = 0/ a, we see 
that we are reduced to considering a one-parameter problem. 
In practical terms, the hypotheses (22) are also quite inter- 
esting, because the "signal-to-noise ratio" i = 0/ a is often 
of interest. We will see that (22) leads to a confidence interval 
for i that is different from any confidence sets for 0; in par- 
ticular, different from (20). 

For the hypotheses (22), a reasonable invariant procedure 
will be of the form 

P(n I X,I. , Xn ) = 5P(n I X/IS ) X(23) 

with corresponding confidence intervals given by 

Ct* (xs) = { : f(x/s I n) 2 f(x/s I 0)/k(n) }, (24) 

where f(x-/s s J) is the noncentral t distribution with non- 
centrality parameter i and n - 1 degrees of freedom. The 
function k( q) is chosen so that C* is a 1 - a confidence set; 
that is, so that the corresponding tests in (22) have level a. 
Figure 4 shows a plot of these intervals, along with the normal 
(o-f known) intervals. It is interesting to note that the resulting 
boundaries are curved, in contrast to the straight line bound- 
aries in the known ff case. 

90% Confidence Limits for ,u/a 

-Noncentral t Distribution- 

C\2 

> X~ 

-10 -6 -2 2 4 6 8 12 

X/S 

Figure 4. Comparison of Ct* of (24) With the Normal (Known o) Interval. 
The dotted lines are the normal interval, and the noncentral t interval is 
shown for 2 df (solid lines), 5 df (long dashed lines), and 20 df (short 
dashed lines). 

Construction of the intervals given by (24) is actually quite 
straightforward, exploiting monotonicity properties of both 
the density and distribution function of the noncentral t. 
Note first that becausef( t J 7 ) has monotone likelihood ratio, 
the acceptance region of the test (22) (i.e., Ho: q versus H1: 

0 = O) is given by 

A,7(t) = { t: t > k (71)} if 71 > OX 

= {t:t?k2( 7)} if 7<0, 

where k, and k2 are increasing functions to be determined. 
Because the distribution function, F( t I 71), is decreasing in 
ii, an a-level test is constructed by solving 

F(t I k-1(t)) = a and F(t I kF-(t)) = 1 - a, 

and setting nu(t) = ky1(t) and flL(t) = k2-j(t) yields 

Ct* (x/s)= { q: min(0, flL(X/S)) 

< n < max(0, 1u(X/1s))} (25) 

Note that this construction holds in general as long as the 
density satisfies suitable monotonicity conditions. Of course, 
Ct* (x/s) is a 1 - a confidence interval, and it also follows 
that the confidence interval (flL(t), 0u(t)) is a 1 - 2a interval. 

For both the setups leading to ( 19) and (22), we can es- 
tablish optimality properties of the resulting confidence sets. 

Theorem 4.1. Among all 1 - a confidence sets for 0 of 
the form (21), the intervals (20) minimize E0,~(vol( C(X, 
S)) for every C2 > 0. 
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Proof As in the proof of Theorem 2.1, use the Ghosh- 
Pratt identity to write 

Eo,,(vol(C(X, S))) = J Po,(0 E C(X, S)) d0. 

Among all 1 - a confidence sets of the form (21 ), the in- 
tegrand is minimized for each 0 by the Ct of (20), because 
these intervals correspond to most powerful level a invariant 
tests of the hypotheses ( 19). 

Theorem 4.2. Among all invariant 1 - a confidence sets 
for q = / a, the intervals (25) minimize Eo,(vol(C(X, S))). 

Proof This follows from Theorem 2.1 upon taking into 
account the monotone likelihood ratio property of the non- 
central t distribution. 

Without the restriction (21 ), the confidence intervals (20) 
are not optimal. In fact, they are not even admissible, because 
it is possible to construct 1 - a confidence intervals with 
smaller expected length for every 0 = 0, a > 0. This is possible 
because the results of Brown and Sackrowitz ( 1984) enable 
construction of level-a tests, SOBS(01 X, S) of (19), whose 
power strictly dominates that of the one-sided t tests leading 
to (20). Consequently, this family of critical functions leads 
to intervals CBS that dominate those of (20), as can be seen 
by applying the Ghosh-Pratt identity as in the proof of 
Theorem 4.1. 

For each (0, a) the ( 1 - a) confidence intervals CBS have 
coverage probability exceeding 1 - a, because the tests of 
Brown and Sackrowitz have size smaller than a. But 
inf{Po,,(0 E CBS(X, S))10, a } = 1 - a. We do not know 
whether the intervals CBS are admissible. Brown and Sack- 
rowitz showed that their tests are admissible for testing Ho: 
0 = 00, a > 0 versus either HI: 0 > 0 if 00 < 0 or HI: 0 < 0 
if 00 > 0, but they did not prove admissibility for Ho and H1 
of ( 19), as would be needed to establish admissibility of CBS . 
But we conjecture that the intervals in Theorem 4.2 are ad- 
missible for g/ a. This is because the tests involved are uni- 
formly most powerful invariant and are admissible by the 
results of Brown and Fox (1974). 

Generalizations to higher dimensions should also be of 
interest. Presumably, the limacon will not appear here, be- 
cause the relevant distributions are multivariate t rather than 
multivariate normal as in Section 3. 

5. CONNECTIONS WITH BIOEQUIVALENCE 

The intervals discussed here, particularly the form (20), 
have seen practical use in bioequivalence testing. This brings 
us to the interesting connection between bioequivalence and 
the limacon of Pascal. 

5.1 Approaches to Declaring Bioequivalence 

The problem of bioequivalence is typically that of deciding 
if the difference of two parameters, Al - A2, is close to zero. 
Typically, these parameters represent different types of treat- 
ments or drugs (e.g., treatments versus control, oral versus 
injection, brand name versus generic). The parameters mea- 
sured are often pharmacokinetic parameters, such as the area 
under the blood concentration-time curve (AUC) and the 

maximum concentration (Cmax) within a specified time pe- 
riod after taking a drug. The interest (usually of pharma- 
ceutical companies) is to demonstrate that the effects are 
equivalent, yielding marketable bioequivalent drugs. 

An initial approach taken to this problem, sometimes 
called the power approach, was to test Ho: A I-2 = 0 versus 
H1: - A2 

= 0 at level a = .05 and declare bioequivalence 
if the test cannot be rejected with the estimated power at 
least .8. This testing approach was criticized by many statis- 
ticians, including Westlake (1972) and Metzler (1974). In 
a number of papers, Westlake (1972, 1974, 1975, 1976, 1979) 
and Metzler (1974) then proposed to construct a confidence 
interval for Al - A2. The confidence interval would be used 
to conclude bioequivalence in the following way. Given a 
prespecified tolerance A, usually set by a regulatory agency, 
bioequivalence would be declared if the confidence interval 
were completely contained in [- A, A]. To use this approach, 
usually called the confidence approach, it it important to 
decide on an appropriate confidence interval. Metzler (1974) 
proposed using the usual 1 - a Student's t interval, whereas 
Westlake (1972, 1976) constructed a different 1 - a interval, 
one that is symmetric about zero (unlike the usual t interval 
which is symmetric about the unbiased point estimator of 
A- 2)A In justifying his interval, Westlake (1981) explained 
that using the "conventional 1 - a confidence interval with 
a = .05 is unduly conservative since the probability that the 
interval falls within the ?+ limits when the difference in 
means is A can be shown to be < a /2 or .025." 

In the setting of hypothesis testing, Westlake's comment 
translates to saying that using the usual 1 - a t interval leads 
to a test of 

Ho: 1,1 -A21 2 A versus H1: 1u1-A21 <A, (26) 

with type I error probability at IA I - A21 = A no greater 
than a/ 2. (In fact, it is true that the size of the test is exactly 
a/2.) But even with these possible interpretational difficulties, 
the hypothesis testing formulation of bioequivalence became 
increasingly popular. Anderson and Hauck (1983) were one 
of the first researchers to formulate the bioequivalence prob- 
lem as a hypothesis test like (26), where rejection of Ho leads 
to the declaration of bioequivalence. Note that what is typ- 
ically the "null hypothesis" is placed in the alternative, as 
this is the research hypothesis of interest. (See also Hauck 
and Anderson 1984, 1992 [the latter is a review paper].) 

Schuirmann (1987) proposed an alternative technique for 
carrying out a test of (26), called the two one-sided tests 
procedure. This procedure establishes bioequivalence ofgAl 
and 2, at level a, if both of the following two one-sided test 
of 0 = I- A2 reject the null hypothesis at level a: 

(a) Ho: 0 <-1 versus H1: 0 > - 

and 

(b) Ho: 0 2 A versus H1: 0 < A. (27) 

It is interesting to note that (27) is a case of an intersection- 
union test, as developed by Berger (1982). As the overall 
hypothesis of interest, that-1 <X 0 ? 1X is an intersection of 
the two alternative hypotheses, individual ae-level tests lead 
to an overall ae-level test for (26) . This approach is currently 
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recommended by the U.S. Food and Drug Administration 
(1992). 

Relating to the mismatch of error probabilities mentioned 
before (26), it has been observed that there is a similarity 
between the a level two one-sided tests procedure and a 1 
- 2a Student's t confidence interval. This similarity is some- 
what of a fiction, based more on an algebraic coincidence 
rather than a statistical equivalence. Both tests in (27) will 
reject Ho, and bioequivalence will be concluded, if and only 
if the 1 - 2a Student's t confidence interval is contained in 
[-A, AX]. This is because the middle of the limacon interval 
is a 1 - 2a interval (see Fig. 3), but the limacon interval 
widens away from this middle region. In fact, formally in- 
verting the family of tests (indexed by 1A) in (27) will yield 
confidence intervals like (13) or (20), the one-dimensional 
limacon. 

More recent research on this topic has centered on con- 
structing confidence intervals for g2- g I, and has paid less 
attention to the testing problem in (26). One possible reason 
for this is that the confidence set approach has the added 
benefit that the constant A does not have to be prespecified. 
Indeed, for a given 1 - a confidence set C(x), and any set 
r, we could conclude that H1: g 1- g2 E r if C(x) C r. It 
then follows that C(x) is the smallest set of parameter values 
A- 2 for which the data will reject Ho (and hence conclude 
bioequivalence). 

Liu (1990) has produced a 1 - a symmetric confidence 
interval that is shorter than that of Westlake (1976) and is 
the smallest interval symmetric about zero that contains (20). 
Other improved intervals have been constructed by Bofinger 
(1992) and by Hsu et al. (1994). Interestingly, with the ex- 
ception of Westlake's interval, all of these other intervals, 
when used as hypothesis tests, lead to Schuirmann's a level 
test, further showing that there is no mismatch of error prob- 
abilities. Further generalizations of this problem, including 
a nonparametric approach, were discussed by Hsu et al. 
(1994). 

There are other formulations of the bioequivalence hy- 
pothesis that lead to alternate tests and confidence intervals. 
For example, one could specify A of (26) in terms of the 
variance o; that is, two procedures are declared bioequivalent 
if their mean difference is no more than a specified proportion 
of their standard deviation. Of course, this formulation leads 
directly to the hypotheses specified in (22), and to the non- 
central t-based intervals of (24). Although this formulation 
of the bioequivalence problem has been used, the optimal 
procedure of (24) has not been used. 

Finally, the bioequivalence problem can be a multivariate 
one, where the full advantage of the lima on can be enjoyed. 
To test the bioequivalence of p different formulations, one 
might specify a set r (possibly a hyperrectangle) in which 
the differences must lie. By constructing a limacon confidence 
set, overall bioequivalence can be examined. Bioequivalence 
is concluded if the limacon confidence set falls entirely 
within r. 

5.2 An Example 
We now illustrate the use of the limaocon with data from 

Sheen, Kim, Petillo, and Serajuddin (1991) on the bioavail- 

ability of drug as a function of different delivery systems; 
that is, the question of interest is whether different delivery 
systems are bioequivalent. The particular drug investigated, 
a 5-lipoxygenase inhibitor that is orally active against hy- 
persensitivity diseases, is a "sparingly water-soluble" drug. 
Although Sheen et al. ( 199 1 ) looked at a number of param- 
eters, for illustration here we will concentrate on only two 
questions. The drug is available in both tablet and capsule 
form, and for each formulation we will investigate the bio- 
equivalence of dosages received with or without food. Eight 
healthy males were used in the study, with appropriate wash- 
out periods between treatments. For each formulation of the 
drug (tablet or capsule) the response differences (with food- 
without food) were measured for the responses AUC and 
Cmax. Thus for each formulation, we construct a two- 
dimensional limacon with parameters 

01 = -l = AUC difference 

and 

02 = i - T2 = Cmax difference. 

The data are assumed to be bivariate normal with known 
variance; that is, we observe 0 = (01, 02), where 0 N(0, 
1). (We could drop the assumption of known variance by 
replacing the normal and chi-squared cutoff points with t 
and F cutoff points.). In general, for 0 N(0, 1), the 1 
- a limacon confidence set is 

j0 (0,2-10)1/2 < Za + 0 /2}, (28) 

where Za is the upper a cutoff point from a univariate stan- 
dard normal distribution. This set reduces to the form of 
(12) with the transformation X = X= .1/2 The 
set (28) is somewhat of an elliptical limacon and is shown 
in Figure 5 for both the tablet and capsule formulations. In 
both cases the limacon confidence set is completely contained 
within the usual one. This would allow the experimenter to 
conclude bioequivalence against smaller values A, and in 
this sense the limacon provides a sharper inference for bio- 
equivalence. Of course, we again note that this reduction in 
volume is obtained only when the "exceptional point" (here 
(0, 0)) is well supported by the data, and the reduction is 
obtained at the expense of an increase in volume in other 
portions of the parameter space. In the study by Sheen et al. 
( 1991) , however, the data are quite supportive of bioequiva- 
lence. In fact, the capsule data are so supportive that the 
limacon in Figure 5a is nearly an ellipse, just as the limacon 
in Figure 2a is a circle. 

6. CONCLUSIONS 

We hope that this article reflects some of the surprise and 
delight that we experienced when discovering these many 
connections between decision-theoretic mathematical sta- 
tistics, Bayes and frequency inference, limacons, and bio- 
equivalence. None of these connections were conjectured at 
the beginning of this research, but as we followed the statis- 
tical and mathematical path, the connections revealed 
themselves. It is perhaps most gratifying that what started 
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Figure 5. Two-Dimensional "Elliptical" Lima9ons (Dashed Line, Usual 

Ellipse; Solid Line, LimaQon) for the Capsule (a) and Tablet (b) Formulations 
in the Sheen et al. (1991) Bioavailability Study. 

as purely an exercise in decision-theoretic optimality has led 
to some interesting and useful rethinking of an important 
problem in applied statistics. 

Part of what this article illustrates is that the decision- 
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a somewhat different formulation of the confidence set prob- 
lem can result in alternate shapes of confidence sets. In par- 
ticular, the case of the normal distribution, where ellipses 
have ruled, has succumbed to an alternate form. It would 
be interesting to see what shapes are optimal for other dis- 
tributions. 

We have also seen the the decision theory can span both 
Bayes and frequency theory, and may provide a solution 
that is acceptable under both types of inference. This dual 
optimality also reflects the power of the Ghosh-Pratt identity, 
which establishes connections between classical properties 
of confidence sets, such as uniformly most accurate (UMA), 
with admissibility under a certain loss structure. 

Of course, there is a limitation to the formulation pre- 
sented here, in that a specified "exceptional" point must be 
identified. In the bioequivalence problem the value zero is 
a clear point of interest, but in other problems such a point 
may not be obvious. Of course, any particular value may be 
substituted for zero, and in other cases such values may be 
obvious, but a value must be chosen. (A situation that is 
reminiscent of Stein-type point estimation). The resulting 
confidence sets are, by construction, exact 1 - a confidence 
sets, but they can be uselessly large when the data do not 
support the specified point. For example, in the bioequiva- 
lence problem the lima9on is not appropriate for detecting 
when two treatments are different. This limitation can be 
anticipated from the decision-theoretic formulation, in that 
the lima9on delivers optimality at zero by sacrificing perfor- 
mance in other regions of the parameter space. 

Interestingly, by using a hierarchical model and a "pseudo- 
empirical Bayes" construction, the limitations of the previous 
paragraph can be avoided. Tseng (1994) has applied Theo- 
rem 2.1 in this way, and has constructed exact 1 - a con- 
fidence sets for a multivariate normal mean that are uni- 
formly smaller than the usual set. These new sets have a 
complicated analytical form but can be shown to be convex 
in many cases and can be displayed graphically. Further work 
in this direction may lead to confidence sets that are optimal 
in a subspace rather than merely near a point, reminiscent 
of Stein-type estimators that shrink toward subsets of the 
parameter space. 

[Received August 1993. Revised August 1994.] 
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